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Various methods of estimating effective properties of composite materials require infor- 
mation about microgeometry contained in the statistical three-point correlation functions. If 
these three-point correlation functions are measured using digital image processing techniques, 
the values are computed for a discrete set of admissible triangular arguments corresponding to 
triangles whose vertices are commensurate with a square lattice. To extract the desired 
geometrical information from the correlation functions, methods of interpolating and 
integrating between these lattice-based correlation function values must be developed. In 
previous work, a minimal subset of the lattice-commensurate triangles was proposed as the 
primary data set. However, to obtain suficient accuracy in the interpolations, it has been 
found necessary to expand the primary set of lattice-commensurate triangles to include other 
triangles. The size of the new set of triangles is less than a factor of two larger than that of the 
previous set; yet this set has the distinct advantage that a sorting and storing algorithm map- 
ping the triangular arguments onto a compact one-dimensional array depends on formulas 
kno\vn in closed form. The spline interpolation algorithm maintains the shape of the argument 
triangle while (1) scaling its longest side to an integer number of pixel widths, (2) following 
with either bilinear or biquadratic interpolation through lattice points surrounding the third 
vertex, and finally (3) complering the estimate with a quadratic Newton forward-difference 
interpolation in the triangle scale size. Statistical comparison with exact values for the 
penetrable sphere model shows that rhis interpolation scheme provides accurate estimates of 
Si off the grid points; better than kO.0296 accuracy is typical for a quadratic interpolation 
scheme. These interpolated values are subsequently used in a Monte Carlo integration scheme 
developed previously for various 3D integrals of .S; and the results are comparable to those 
obtained with the exact .SX for penetrable spheres. 

I. INTRoOL~CT~~N 

It has recently been proposed that the statistical data required for various 
applications to composite materials [l] be obtained using digital image processing 
techniques [Z]. This appoach allows quantitative determination of volume fraction 
data, of interface area per unit volume, and of more sophisticated measures of the 
topology of material mixtures including the n-point spatial correlation functions. It 
has been demonstrated that the two-point and three-point correlation functions can 
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CORRELATION FUNCTION INTERPOLATION 87 

be measured quite accurately both for synthetic materials [2] and for real materials 
such as porous sandstones [3]. 

Since these correlation functions are determined from the digital images, the 
correlation data gathered necessarily form a discrete set. In particular, the digital 
images are normally composed of square arrays of picture elements {or pixels) and 
the natural basis for the correlation measurements is the distance separating the 
pixel centers. The correlation values obtained are those for lengths commensurate 
with the underlying square lattice, i.e., lattice points separated by exactly these dis- 
tance can be found. 

The correlation functions are themselves only an intermediate step in the process 
of determining the desired statistical properties of the composite. To obtain the final 
results. the correlation functions must be used as the integrand of some complex 
integrals. The purpose of this paper is therefore to develop methods for inter- 
polating between the measured values of the correlation functions. and then to use 
these interpolated values in the integrals needed to find the desired measures of the 
composite’s microgeometry. To obtain sufficient accuracy in the interpolations for 
the required (conditionally convergent) integrations, it has been found necessary to 
expand the set of lattice-commensurate traingles beyond the minimal subset 
originally proposed [Z]. The size of the new set of argument triangles is less than a 
factor of two larger than that of the previous set; yet this set has the distinct advan- 
tage that the sorting and storing algorithm, which maps the triangles onto a com- 
pact one-dimensional array, depends on formulas which are obtained here in dosed 
form. 

Quadratic spline interpolation is used for all three arguments of the three-point 
correlation function. The mcrogeometry parameters computed using the inter- 
polated functions then agree with the exact values within the statistical error of the 
Monte Carlo integration method. 

II. SPATIAL CORRELATION FUNCTIONS 

A discussion of the significance of the spatial correlation functions has been 
presented recently, together with a detailed analysis of methods for obtaining these 
functions experimentally using image processing techniques [2]. We will not repear 
the detailed discussion here. but it is still necessary to define the correlation 
functions and mention their relevant properties. The discussion is limited to two- 
phase composite media. 

Let p(x) be the value of some property of a random composite material (e.g... 
electrical or thermal conductivity, dielectric constant, bulk or shear modulus, etc.) 
which assumes one of two values p0 or p1 depending on whether x is Iocated in a 
grain of material 0 or material 1. Define the indicator or characteristic function 

.f(x)= P(X) --Po 
PI-PO 
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Then ,f(s) = 0 in material 0 and .f(x) = 1 in material 1. For example, in a porous 
medium we may arbitrarily label all solid regions as material 0 and all void regions 
as material 1. Since complete knowledge of the stochastic variable f is seldom 
available, our interest in the characteristic function is generally limited to a few of 
its statistical properties. If chosen properly, these quantities are often sufficient to 
provide the data needed for variational bounds on the macroscopic average of the 
property being studied [ 11. 

The first three spatial correlation functions are defined by 

and 

3, = <f(x)> =413 

&(rl.r2)= (f(~+r~)f(x+~.d), 

(2) 

(31 

S,(r,, r2,r3)= (f(x-trl)f(x+r2)f(x+r,)). (4) 

The brackets (. ) indicate a volume average over the spatial coordinate x. The 
volume fraction of constituent 1 is given by 4,. We will refer to the three 
correlation functions defined this way as the one-, two-, and three-point correlation 
functions, respectively. Since two points lie along a line and three points lie in a 
plane, the two-point and three-point correlations (as well as the one-point 
correlation) may be measured by processing digital images of material cross 
sections. In the present paper, we will stress the three-point correlation functions. In 
general, we assume that the composite medium of interest is statistically 
homogeneous so that on average only the differences in the coordinate values are 
significant (translational invariance). Furthermore, we often assume that the 
microstructure of the material being studied is statistically isotropic on a local scale 
so that appropriate local averges do not depend on the orientation of the 
arguments. (An example of local isotropy in conjunction with global anisotropy is a 
material with transversely isotropic microstructure composed of thin layers each 
having isotropic microstructure. Such a material can be treated if the correlation 
functions are determined by examining cross sections taken perpendicular to the 
axis of symmetry.) With these assumptions, we find that the two-point correlation 
function simplifies to 

(5, 

while the three-point correlation function satisfies 

Sdr,, r2, r3) = S3(r12, r13) = S3(y12, r13, p12. 13 13 (6) 

where 

and 

rii = rj -- ri, rii = I rii / , 

,uli, ik = cos 8 = ri, . ri,Jriirik. 
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The two-point correlation S,(X) is the probability that two points a distance .I = I’;. 
apart are both in material 1. The three-point correlation function S,f.-i, ~3. 11) is the 
probability that all three vertices of the triangle determined by (.Y- .L’, p) he 3n 
material 1. 

In a random material possessing no long range order. we have 

and 

assuming that p f 1 or that the difference S-J is not fixed if ,1( = 1. A most impor- 
tant property of S, for statistically homogeneous and isotropic media is the fact 
that the value depends only on the size and shape of the triangle formed by its 
arguments not on the orientation of that triangle. Thus, 

S,ir,,, 1’13. p1z. ,3)=x&i.?,, f.13, h.23)= S,(r,,. r3:+ P3,.i?I. (9! 

Furthermore, the order of the first two arguments may be freely interchanged. 1; is 
important to account for the symmetries (9) when designing a scheme to calculate. 
sort, and store the values of S,, otherwise the stored values could be as m.uch as 
sixfold degenerate. 

In general. these spatial correlation functions must be determinrd empiricali;s. 
These one-, two-. and three-point correlation functions may be found using digital 
image processing techniques described previously [2]~ However. during code 
development, it is very helpful to have an analytical model of these correlation 
functions for some realizable two-phase composite. The penetrable sphere mode! 
provides such an example. This model is composed of points distributed randomiy 
m three-dimensions; these points form the centers of spheres of arbitrary but 
uniform radius. The sphere interiors are considered regions of material 0, while 
regions exterior to all spheres are regions of material 1. Because the sphere centers 
are uncorrelated, all the correlation functions may be determined analytically [2]. 
This model will be used extensively in the following sections to check the accurac:. 
of our interpolation and integration schemes. 

III. SORTING AND STORING 

For digital image processing, it is clearly advantageous to compute S3 only for 
those values whose triangular argument lies exactly on three lattice points. 
Hovvever, we need not blindly compute S, for every lattice-commensurate triangle. 
One scheme has already been proposed [2] for choosing a minimal subset of 
all lattice-commensurate triangles; this scheme was believed to be adequate for 
purposes of interpolation. The scheme is summarized in the following paragraphs. 
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Originnl Algorithm 

A minimal set of lattice-commensurate triangles is uniquely determined by the 
following algorithm: Each triangle will be labelled by three integers (1, nz, n). The 
first integer I is the length of the longest side of the triangle measured in units of 
pixel width. The vertex formed by the intersection of the longest side and the shor- 
test side of this triangle is then treated as the origin (0,O) of an (nz, n) coordinate 
system. The longest side of the triangle is placed along the m-axis so that the second 
vertex is located at (1, 0). The third vertex of the triangle is then located in the first 
quadrant at (rn, n). 

All triangles whose longest side is an integer number of pixel widths may be sor- 
ted in this manner. The third vertex specified by (nz, IZ) will always lie in a sector of 
a circle of radius I centered at (I, 0), bounded below by the m-axis, and on the right 
by the line H?= l/2. The arc occurs because the side of intermediate length can be 
equal to but never longer than 1. The line at ~tz = I/2 occurs because the smallest side 
can be equal to but never longer than the intermediate side; furthermore, since the 
triangle with vertex (l-m, n) has the same shape as the one at (m, n), we have 
reflection symmetry across the line nz = l/2. Note that, although all right triangles 
with integer length sides adjacent to the right angle are lattice-commensurate 
triangles, these right triangles have not been included in this “minimal subset” 
because the corresponding value of S, lies within a pixel width of those values con- 
tained in the minimal subset. 

Modified Algorithm 

It has been found that, when interpolation is attempted between general triangles 
using the set of lattice-based triangles provided by this original algorithm, the 
accuracy is not adequate for the complex integrals to be evaluated. The main 
problem is illustrated in Fig. 1. The minimal subset of triangles included in the 
original algorithm corresponds to those lattice points lying in the cross-hatched 
region of the diagram. If we need to evaluate S, for triangles whose side of inter- 
mediate length is comparable to that the longest side, then the third vertex will fall 
in a region of (~7, n) where it cannot easily be surrounded by four points with 
known correlation function values (such poorly determined points lie in the regions 
of double cross-hatching in Fig. 1 j. We can resolve this difficulty by expanding the 
original data set to guarantee that any such point is surrounded by points with 
known values; such an expansion forces us to compute and store more than the 
minimal subset of S3 values, i.e., all the triangles determined by the vertices lying in 
the rectangles of Fig. 1. Nevertheless, the new set is significantly simpler to use in 
computations because the algorithm for sorting and storing can be determined in 
closed form. In general, we choose triangles labelled (I, ~2, n) for those values which 
satisfy 

and 
O<t?ld [Z/2] (10) 

0 6 I7 < I, (11) 
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FG. 1. Illustrating the problem of accurate interpolation based on the minimal set of lattice-com- 
mensurate triangles (with vertices at lattice points lying in the cross-hatched region). Although poirrs 
close to the boundaries (in the doubly cross-hatched region) lie within one pixei of an inc!uded latrice 
point, they are not surrounded by such points. There are also not enough known points available for 
accurate extrapolation. The modified algorithm solves this problem by including trizngles with vertices 
at a!l lattice points in the rectangle as shown. 

where the operator [ .] truncates the argument to the largest integer value. The nc~ 
set is illustrated for I < 8 in Fig. 2. 

Next we need to find an efficient method of addressing the triangles labelled by 
the triple (I, m, n). We choose to assign the addresses I, ,)1,)1 so that (i) all addresses 
with fixed / are contiguous, (ii) for given I all addresses with fixed m are contiguous, 
and (iii) I,, nz. rI increases whenever I, n771, or /z increase. If the total storage 
requirement T, for all triangles with largest side less than or equal to 1 is determined 
by the recursion 

T,=T,_,+i[li’2]+1)(!+1! i12) 

with T_, = 0. then clearly we have II+ ,.o.O = I,+ 1. It follows that 

I ,+,.o.o=~~,o.o+(Cli’21+1)(i+Ii. i13) 

Using these facts. we can easily generate Table I. Now it is possible to solve ti?ese 
recursion relations for the general expressions satisfied by the addresses 1,, (;. O or for 
the storage requirement I,. In the process of doing so, certain identities appear 
which are useful for checking the results. For example, we can easily show for even 
132 that 

and 

z,, 0, 0 = z,- ?,O,O + I’ - 12 (141 
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FIG. 2. Illustrating the expanded set of lattice-commensurate triangles used by the modified 
algorithm for I< 8. The Monte Carlo integration scheme chooses triangles whose third vertex lies 
somewhere in one of the cross-hatched regions. These vertices are now surrounded by lattice points with 
known values, directly for I even and,‘or by symmetry around m = [l/Z] for 1 odd. 

where Z,, O,. = 1 and I,, 0, o - _. - 3 The general expressions for the addresses are then 
given by 

Z I. o, o = 13/6 + 312/8 + 4’12 + 1 (16) 
and 

I /+ ,,o,O= 13/6 + 71’18 + 191/E +2 (17) 

for even 13 0. It is straightforward to check that these expressions (16) and (17) 
satisfy the constraints (13)-( 15) listed above. Finally, the general expression for an 
arbitrary address is given by 

I I, m, n = 1, 0, 0 +m(l+ 1) + iz. 

Thus, (16b( 18) provide a convenient algorithm for mapping the expanded subset 
of lattice-commensurate triangles onto a one-dimensional array. 
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TABLE I 

Number of Triangles in a Convenient Set of Lattice-Commensurate Triangles with 
Longest Side Equal to 1 Units 

No. of 

triangles 

Storage 

-* (T,) 1 

No. 3f 
triangles 

Storage 
requirement 

I-C!) 

0 
1 
2 
3 
4 
5 
6 
7 
s 
9 

1C 
11 
:3 
13 
14 
15 
16 
17 
18 

1 
2 
6 
8 

15 
16 
28 
32 
45 
50 
66 
72 
91 
OS 

120 
i28 
153 
162 
190 

: 19 
3 20 
9 2i 

11 22 
32 23 
50 24 
78 25 

110 76 
155 27 
205 28 
271 29 
343 30 
434 31 
532 32 
651 18 
780 64 
933 96 

1095 1’8 
1285 

200 
‘71 
;jT 
276 
188 
325 
338 
378 
392 
435 
450 
436 
<:7 JI_ 
561 

1225 
2145 
4153 
8385 

l-185 
1716 
1958 
7734 --. 
2522 
‘847 
3185 
3563 
3955 
1390 
4840 
5336 
5848 
6409 

20525 
-I7377 

155613 
364065 

X~re. The cumulative total for all cases with longest side less than or equal to I determines the 
required storage capacity r,. Note that. for a single image with 512 x 512 pixels, triangle size has been 
restricted in the text to 1<63 to avoid storing more values of Sr than the total number of pixels in rhe 
original image. 

IV. INTERPOLATION SCHEMES 

In this section, we will follow the convention that lower case roman symbols in 
the range i, .~., IZ refer to dimensionless integers and lower case greek symbols refer 
to dimensionless real numbers, while capital roman symbols H, . . . . X are real 
numbers with dimensions of length. Now for a triangle with sides R d S d T, we 
define the triple (L, M, N) by 

L = T, 

M=(R"+T'-S'),DT=RcosQ. 

and 
N= (R’- &f’)l,’ z R sin 0. 

The angle 6 is the angle between the sides of length R and 7: 
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For interpolation and integration, we will measure all triangle lengths in units of 
pixel size H. Then, the normalized triple (L/H, A4/H, N/H) will not generally fall on 
any of the lattice-commensurate triangles defined in Section 111. When the triangle 
is commensurate with the lattice (i.e., (I, 117, n) = (L/H, A4/H, N/H), where I, m, n 
are all integers), the lattice-commensurate values V are stored in a linear array 
following the rule 

VI,, m. .) = S,(R T, ~0s 0). (22) 

If the triangle is not commensurate with the lattice, then interpolation is required. 
We will interpolate between the known values of the three-point correlation 
function in two stages. In doing so, we maintain the shape of the triangle, but scale 
its size so that the longest side of the scaled triangles is an integer in pixel-width 
units. (1) First, we obtain an interpolated value for the correlation function of the 
scaled triangles by interpolation in (m, IZ) for fixed I. (2) Then, we interpolate 
between the reference values of 1 to obtain our estimate of the correlation function 
for the triangle of the correct size and shape. This procedure amounts to inter- 
polating along a one-dimensional slice through the three-dimensional function 
using triangle shape to fix the ratio of the lengths of two sides and the angle 
between them, while a size multiplier serves as the remaining free variable. 

The reference values for i are obtained from the largest integer in L/H, 

I= [L,‘H]. (23) 

In scaling the triangle, we shrink it by a factor of [H/L and expand it by factors of 
(I + 1) H/L and (I+ 2) H/L. For example, if 

pk = k&f/L and 11~ = kN/L, (24) 

where k = I, I+ 1, or I+ 2, then the interpolation points closest to the origin in each 
of the three scaled triangles are located by 

(25) 

Since each pixel in the digitized image corresponds to a unit square of constant 
value, several methods of interpolation suggest themselves: ( 1) nearest neighbor 
interpolation, (2) bilinear interpolation, and (3) biquadratic interpolation. For real 
digital images, nearest neighbor interpolation is consistent with the discrete nature 
of the measured correlation function, but the algorithm for such an interpolation 
scheme for lattice-commensurate triangles is not very accurate. We prefer either 
bilinear or biquadratic interpolation because, for the examples of correlation 
functions that we can compute exactly (i.e., the penetrable sphere models [2]), 
these interpolants can be compared directly to the exact values at the intermediate 
points. Quadratic interpolation in triangle size is easily implemented for both 
methods. Thus, we have an ideal method of checking the accuracy of our inter- 
polation and integration schemes if we use either bilinear or biquadratic inter- 
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polation. For bilinear interpolation, the four interpolation points typically used for 
a triangle with longest side k are (m,, n,), (RI,, rz,+ l), (m,+ 1, nk), and 
(lxx. -I- I. nk + 1). For biquadratic interpolation, the nine interpolation points 
normally used fall in the square with corners given by (r;tl,, n,)? (.m,, f14- -+ 2). 
(171~ + 2, n,), and (m,+ 2, n,+ 2). We have tested both the bilinear and the 
biquadratic interpolation schemes in our integration routines (see Section Vi. We 
found that the accuracy of the bilinear interpolation was sufficient to calculate the < 
Milton number, but not so for the rr Milton number. We will therefore present only 
the biquadratic interpolation scheme since it is the more general. 

For fixed k and m, the quadratic interpolation for n, ,< ilk ,< II& + 1 is given in 
terms of the stored values v by the Newton forward-difference [4, 5] 

@f!~? = “tzk~ m. IQ+ 1, + $[ c/jzk~ m, nh + 2) - vl z~, tn. ,,,.)li \‘k - 1 - ?lk 1 

+;~E’!~k,nz.n~+2 I+ ~(~,.nr.,4)-2b’(~k.,,,.,,i+1)1(1’,~- 1 -ilk? (25) 

as long as the restriction 12~ + 2 <k is satisfied. If instead we have X: <n, i- 2, then 
we must use the Newton-backward difference 

Then. the biquadratic estimate E, of S, for fixed k is given generally by 

Ek = @k. ,,I% + I + i(@k. WE,& + 2 - @k. mj NPk - 1 - mk 1 

+ $@k. ,rrb+ 2 + Q/i. ,,,i - 2@,. ?)lP + L )ip:, - 1 -qv. ( 28 ! 

Equation (28) is appropriate as long as 1~~ + 2 < [1;‘2]. Two special cases arise if 
~7~ + 1 < [l/2] -=c nrk + 2, for then 

@k, Ml. + 2 = @k. l?ik + 1 (29) 

for m,+ L < [l$] whde 

for mk + 1 = [1/2]. Both (29) and (30) follow easily from the reflection symmetry as 
seen in Fig. 2. 

If m, + I> [!/2]% we then recall that the symmetry is such that the values of S, 
are equal for the triangles corresponding to the triples jk, ~1~~ nk) and (k, !?rk + i. 
?I,(). If we were to use only these two triangles in the bilinear interpolation then the 
interpolant would be constant in the whole region nzk d pLn < [I/2]. To correct this 
deficiency, we also include information from the values for the triangics 
(k, prig - I, nk) and (li, mk- 1, n,+- 1). Thus, the estimate of E, is given for !DJZ+. < 
pk < [I;21 < irik + 1 by 
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for both the bilinear and the biquadratic interpolation schemes. If mk =0 and 
nzk + 1> [Z/Z], then we cannot use (28) or (31) but an adequate approximation is 
produced by taking E, = @,, mu. 

When each of the three values Ek for k = I, I + 1, and I+ 2 have been found, the 
first stage of our interpolation process is complete. Then, we interpolate in triangle 
size to the point 1= L/H using a Newton forward-difference formula of the form 

E,=E,+,+f(E,+,-E,j(A-I- I)+f(E~+2+El-2E~+~j(~-l- I)‘. (32) 

Equation (32) completes the second and final stage of the interpolation scheme. 
The interpolation scheme presented here works very well everywhere except near 

the origin, i.e., for triangles of small size (on the order of a single pixel). Then, an 
altogether different approach is required. Our solution to this problem is described 
in Appendix A. 

To check the accuracy of our interpolation scheme, we have run some statistical 
tests during the execution of the integration routine using the three-point 
correlation functions for the penetrable sphere model. For the bilinear interpolation 
scheme with a volume fraction 4 = 0.5, Id 32, and the sphere radius chosen to 
correspond to about 14 pixels, we find that the absolute error for 16 x lo4 inter- 
polants of S, tends to be negative (i.e., the estimate is systematically low) with a 
magnitude (on average) less than 2 x lo-” while the average of the absolute value 
for the relative error was about 6 x lo-~“. No relative errors were found to be larger 
than I%, and only about one in one thousand were found to be larger than 0.5%. 
When C$ < 0.5, we found significantly more of the interpolants (up to 20% ) had 
relative errors as high as 0.5%; we attribute this increase to the decrease in 
magnitude of S3 itself. When 4 > 0.5, we found significantly less of the interpolants 
(typically none) had relative errors as high as 0.5%; again we attribute this 
decrease to the increase in magnitude of Sj. For the biquadratic interpolation 
scheme with volume fraction 4 = 0.5, 1~ 64, and the sphere radius chosen to corre- 
spond to about 11 pixels, we find that the absolute error on average had magnitude 
2 x 10P5 and none of the interpolants had relative errors as high as 0.5%. We also 
compared our interpolants with results of approximate formulas [6] relating S3 to 
products of values of S2 such as f,(~, s, tj = S2(v) S,(s)/4 and j,(,, s, t) 2 S2(r) 
iIS2b) + S,(t)/&413 w h ere t = (r2 + s2 - Zrsp)“‘. Even the bilinear interpolants were 
uniformly better than these estimates. 

V. INTEGRATING S3 

Milton [7, S] has introduced two parameters depending on the microgeometry 
of a composite through the three-point correlation function S,. These two 
geometric parameters of interest for studies of electrical or thermal conductivities 
and elastic constants are 

(33) 
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3: 

and 

where d1 = d, &o = 1 - $i, and P?(p) and P4(/0 are the Legendre polynomials of 
order 2 and 4 given, respectively, by 

and 

P,(p) = +( 3p’ - 1) 

PJp) = $(35$ - 3og + 3). 

The integrands of both integrals (33) and (34) are singular for small values of P, s 
and poorly behaved for large values of Y, s. The conditional convergence of the 
integrals requires that the integration over p be performed before allowing the 
limits of integration over T and s to reach their ultimate values. The singularity at 
the origin may be handled easily by standard methods. To improve the rate of con- 
vergence at large values of the independent variables r and s, we add and subtract a 
term that can be integrated analytically giving 

and 

where t = (r’ + s2 - 2rsp)Li2. The integrals of S3 are then evaluated using the adap- 
tive Monte Carlo integration procedure VEGAS [9] used previously for computing 
variational bounds on permeability for aggregates of hard spheres [lo] and on 
elastic constants for penetrable spheres [ 111. The details of the numerical method 
for applications to (35) and (36) have been discussed in Ref. [I 11. The only added 
complication is that, when a value of S, is called by the integration routine, it is 
generated using (26)-(32) or the formulas in Appendix A. The results are sum- 
marized in Tables II and III. 

For the penetrable sphere model, we have found that the Monte Carlo 
integration scheme works best for low values of a,, and worst for high values 4). 
The method is known to perform poorly when the absolute value of the integral is 
small and fails to converge at all if the integral actually vanishes. The values quoted 
in Table II are sums of an analytical part (known exactly) and the integral 
involving S3 (see Eqs. (35) and (36 j). Thus, for high values of dI, the relative 
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TABLE II 

Comparison of the Computed <, Milton Numbers [7, S] for the Penetrable Sphere Model 

il il il c-l 
(Linear) (Quadratic j (Berryman [ 111) (Torquato er al. [ 121) 

0.10 0.48 0.46 0.46 0.442 
0.20 0.54 0.52 0.52 0.518 
0.35 0.61 0.61 0.61 
0.50 0.70 0.70 0.71 0.711 
0.65 0.75 0.78 0.80 
0.80 0.91 0.87 0.88 0.886 
0.90 0.95 0.E 0.94 0.945 

Note. The first and second <, columns show the values obtained using the lattice-based linear and 
quadratic algorithms described in Section IV. Triangles with longest side I < 32 were used for the linear 
interpolation scheme, while those for I< 64 were used for the quadratic scheme. The third column shows 
the values obtained using the same integration routine (VEGAS [9]), but the exact values of Sz in the 
integrand [II]. The fourth column shows the corresponding values obtained by Torquato er a/. [I?] 
using a Gaussian quadrature routine together with the exact S1 in the integrand. 

contribution of the integral to the total can be quite small; whereas, for small values 
of d,, the relative contribution of the integral is significant. We find that the error 
in the integral itself may vary from l-2% for 4, =O.l up to as much as 10% for 
4, = 0.9. However, because the contribution of the integral to the total is decreasing 
in virtually the same proportion as the error is increasing, we find that the error in 
the final result remains essentially constant at )0.02 for [, and a little more for v] 
over the range of volume fractions considered. We do not recommend Monte Carlo 

TABLE III 

Comparison of the Computed ‘I, Milton Numbers [7, S] for the Penetrable Sphere Model 

4, 

‘11 ‘1 I ‘1t 
I Quadratic) ( Berryman [ 111) (Torquato er al. [12]) 

0.10 0.38 0.35 0.342 
0.20 0.47 0.43 0.416 
0.35 0.54 0.54 
0.50 0.66 0.64 0.633 
0.65 0.75 0.75 
0.80 0.88 0.85 0.85 1 
0.90 0.94 0.92 0.925 

Note. The first vi column shows the value obtained using the lattice-based quadratic algorithm 
described in Section IV. The second column shows the values obtained using the same integration 
routine (VEGAS [9]). but the exact values of S, in the integrand [ll]. Triangles with longest side 
I< 64 were used in the interpolation scheme. The third column shows the corresponding values obtained 
by Torquato ef nl. [ 121 using a Gaussian quadrature routine together with the exact S, in the integrand. 
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integration when highly accurate calculations of these integrals are desired; 
however, this method is as accurate as we can ever expect our S, data to be on real 
materials. Furthermore, this method is most accurate in the region with &1 < 0.5, 
where most data will be gathered for porous composites such as rocks. To improve 
the accuracy of the PI integration, either the total number of data points needs to be 
increased substantially so that the largest triangles have side i= 128 or a higher 
order spline interpolation may be required. 

One very interesting observation about the results for < and rl concerns the choi~ce 
of image magnification. The digital image used to produce the empirical values of 
S, may or may not contain the level of detail required for accurate computation of 
these integrals. Using triangles with iongest side ld 64, we have found that our 
integration scheme produces good results for < when the effective radius R of t>e 
penetrable spheres satisfies R/Hz 12, where H is the pixel width. For >I the best 
results were obtained when the effective radius of the penetrable spheres satisfied 
R/Hz 25. Thus, the image magnification required for the two integrals differs II): 
about a factor of 2. This result is very reasonable when we compare the Legendre 
polynomials PZ and P, appearing in the integrands. Since P, has twice as many 
zeroes as Pz* it is clear that, whatever image magnification is required to obtain 
accurate values of i, an image magnification about twice as large will be needed to 
obtain comparable accuracy for q. The observed behavior conforms to this expec- 
tation. 

Although we might expect this factor of 2 difference in optimum image 
magnification to be maintained for real materiais. we do not expect that these 
particular values of R/H (particle radiusipixel size) will be appropriate for all 
materials. The spherical particle shape and the lack of both cracks and surface 
roughness make the penetrable sphere model somewhat unreahstic. If the 
magnification of an image must be increased substantially beyond the values quoted 
in the preceding paragraph, then it is likely that the number of pixels in the image 
will also have to increase beyond the value of 512 x 512 assumed here. With the 
largest triangles having side 16 64, the total number of S, values computed from an 
image is 47.377. fncreasing the largest triangle size by a factor of 2 means increasing 
the total number of S3 values to 364,065 (see Table I j: such an increase entails 
storing more computed values of S, than the total number of pixels in the original 
image. If such an increase in the data base is really needed for accurate deter- 
mination of the integrals of interest, it might be preferable to use the digitized image 
itself as the data base for the larger triangles and compute the values of S, for these 
triangles as needed during execution of the integration routine. Another approach 
would be to increase the number of pixels per image to 1024 x 1024 or 2048 x 2048 
directly or by constructing a mosaic. The method of sphne interpolation presented 
here could be used with any of these approaches to the integration problem. 
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VI. CONCLUSIONS 

We conclude that it is possible to produce interpolated values of the three-point 
correlation function from lattice-based measurements using the schemes presented 
in Section IV and Appendix A; these interpolants are sufficiently accurate to allow 
the conditionally convergent integrals of interest to converge. These interpolants 
may also be used in any integration scheme for the various integrals defining the 
geometric parameters of composite materials. For empirical values of the three- 
point correlation functions, we expect that the measurement error will generally far 
exceed the errors introduced by the interpolation scheme. 

APPENDIX A 

The interpolation schemes described in Section IV work well for the vast majority 
of triangular arguments. However, when the size of the triangles is so small that the 
longest side is comparable to the size of a pixel, a different approach is needed. In 
this region, we need to use all the information we have as efficiently as possible for 
two reasons: (1) The correlation function is changing rapidly and (2) there are very 
few data points for such small triangles. For the interpolation with 13 2, we can use 
nine data points (including symmetries) for each of the three I-values in our New- 
ton forward-difference interpolation-for a total of 27 data points. However, from 
Table I, we see that the total number of data points gathered in this algorithm for 
I < 2 is only T, = 9; thus, this region requires special treatment. 

For a triangle with sides R < S< T, we use the conventions of Section IV to 
define the triple (L, M, N) with values given by (19)-(21) and the normalized triple 
(1, ,LL, v) = (L/H, M/H, N/H), where H is the pixel width. Then, the three-point 
correlation function is defined in terms of these arguments to be 

&(A, p, v) = S,(R, T, cos 0). 641) 

Using this method of describing the triangular arguments, the three-point 
correlation function is known to possess the following symmetry properties: 

and 

S,@, 0, v) = S3(v, 0, A) (Al) 

s,(A, ,a, v) = FCA, vr (p - &‘2)‘], (A3) 

where F is some function with three arguments. Equation (A2) is a statement of the 
fact that, if p = 0, the shape and size of the right-triangle argument are both preser- 
ved when II and 1~ are interchanged. Equation (A3) states that, for fixed 1 and LJ, 
s,(& p, \I) is an even function of ,u around the midpoint p = A/2/2. 
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Using (A.2) and (A3), we can construct a polynomial approximation for 
S,(& p, 11) possessing the appropriate symmetry properties. This approximation is 

S,(~,~,v)=a(l)+a(2)(~+v)+nj3j~~‘+a(4)~~’ 

+ u(5) Av + a(6) dv(A i v) + n(7) A’? 

+ (2p-i): (a(S)+ u(9) G). (k4) 

Coefficients of 1, and v that have been combined directly to guarantee satisfaction of 
(A2 ) for arbitrary values. In addition, we also have the condition that 

a(4) = a(3) + u(8). (Aj) 

Thus, we have eight independent coeffkients to be determined. These values can be 
found easily by excluding one of the available data points for i< 2, equating the 
polynomial to the remaining correlation function values at the grid pomts, and then 
solving recursively for the coeffkients. We choose to exclude the data point for 
(2, 0. 2), since it is the one farthest from the region occupied by the minimal subset 
of lattice-commensurate triangles. The results for the coefficients are 

a( 1) = S,(O, 0, 0). 

a(4) = 4[~s,(2,0,0) + 41) - as,(l. 0, 0)13 

42) = S,(l, 0,O) - u(.l) - a(4j7 

@)=$[TS,(2, l,O)-u(l)-2u(2)]> 

a(8)=u(4)-u(3), 

a(9) = @,(2,0, 1) - S,(2, I, I )] -a@), 

and 

a ( 5 ) = 4x - 2y + $4, 

a( 6) = - 2x + 3~,/‘2 - ~‘4, 

u(7)=x-J’+2/4. 

where 

x=sJl,O, 1)-u(1)-2u(2)-2u(4)-u(9), 

y=&(2, 1, l)-u(l)-3u(2)-4a(3)-u(4), 

~=S,(2,1,2)-a(lj-4[~(2)+~~3j+~(4)~. 
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